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Abstract. In situ carbonate U-Pb dating studies have proliferated dramatically in recent years. Almost all these studies have 

targeted relatively young calcite up to Carboniferous in age. To assess the robustness of the carbonate U-Pb chronometer in 

deep-time, we carried out in situ U-Pb analyses in magnesite-ankerite-calcite carbonates in the martian meteorite Allan Hills 

(ALH) 84001. Carbonates in ALH 84001 formed at ca. 3.94 Ga, and there is little evidence that much happened to this rock 

since then, making it an ideal sample to test the robustness of the U-Pb system in old carbonates. We obtained a concordant 10 

date of 3941 ± 49/110 Ma (n = 14, MSWD = 2.0), which is identical to the step-leaching Rb/Sr date determined previously. 

These results thus confirm that old carbonates are amenable to U-Pb dating in samples that have had a relatively simple history 

post-carbonate formation. 

1 Introduction 

Analytical developments in laser ablation – inductively coupled plasma mass spectrometry (LA-ICP-MS) over the last decade 15 

have driven important progress in in situ dating of carbonates, and in particular of calcite and occasionally dolomite, using the 

radioactive decay of uranium (U) into lead (Pb) (see the recent review by Roberts et al., 2020, for example). Indeed, biogenic, 

diagenetic, and vein carbonates can typically incorporate up to ca. 10-20 μg.g-1 U, and up to ca. 100 μg.g-1 U in speleothems 

(e.g., Roberts et al., 2020). Carbonates also incorporate initial Pb, meaning that multiple analyses on carbonate samples often 

yield linear arrays in a Tera-Wasserburg inverse concordia diagram, providing information on both the 207Pb/206Pb composition 20 

of the initial Pb and the age of formation of the carbonates. Recent applications of carbonate U-Pb dating using LA-ICP-MS 

include constraining the timing of sedimentation, lithification, and diagenesis (e.g., Drost et al., 2018; Godeau et al., 2018; 

Mueller et al., 2020; Brigaud et al., 2021), faulting (e.g., Ring and Gerdes, 2016; Roberts and Walker, 2016; Goodfellow et 

al., 2017; Nuriel et al., 2017; 2019; Hansman et al., 2018; Beaudoin et al., 2018; Holdsworth et al., 2019; Smeraglia et al., 

2019), aragonite to calcite conversion in ammonites (Li et al., 2014), alteration of oceanic crust (Coogan et al., 2016), veining, 25 

hydrothermalism, and mineralisation (Burisch et al., 2017; 2018; Parrish et al., 2018; Walter et al., 2018; Bertok et al., 2019; 

Drake et al., 2019; 2020; MacDonald et al., 2019), palaeoclimate reconstructions (Nicholson et al., 2020), and hominin 

dispersion (Scardia et al., 2019), for example. 
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All these in situ studies have targeted relatively young samples (younger than ca. 465 Ma), with two-third of dates younger 30 

than 50 Ma, and all but two younger than 300 Ma (Supplementary Table S1). This is consistent with the accepted idea that 

carbonates are not very resistant to resetting of their U-Pb isotope systematics when thermal- and/or fluid-related alteration 

events take place after their formation (e.g., Roberts et al., 2020). However, a few studies have focused on dating older 

carbonate samples, using wet chemistry to isolate Pb isotopes, and obtained Pb/Pb isochron dates ranging between ca. 1.60 

and 2.84 Ga (Moorbath et al., 1987; Bau et al., 1999; Ray et al., 2003; Sarangi et al., 2004; Farey et al., 2013). These Pb/Pb 35 

dates have been interpreted as dating the deposition of these carbonates, suggesting that in some settings the Pb isotope 

systematics of carbonates can remain undisturbed for billions of years. To further assess the robustness of the carbonate U-Pb 

chronometer in deep time, we decided to attempt in situ LA-ICP-MS U-Pb dating of carbonates in the martian meteorite Allan 

Hills 84001 (ALH 84001). The formation of these carbonates has been dated at 3.94 ± 0.02 Ga (2) using Rb-Sr analyses on 

acid leachates via thermal ionisation mass spectrometry (Borg et al., 1999; Beard et al., 2013; date recalculated using a 87Rb 40 

decay constant of 1.3972×10-11 yr-1; Villa et al., 2015).  

 

The meteorite ALH 84001 is an orthopyroxenite, a cumulate rock mostly comprising orthopyroxene, olivine, and chromite 

(e.g., Mittlefehldt, 1994), which formed ca. 4.1 Ga ago as suggested by Lu-Hf and Pb/Pb dating (Bouvier et al., 2009; Lapen 

et al., 2010). Carbonate-rich areas are irregularly scattered throughout ALH 84001, appearing as spherical or hemispherical 45 

globules, discs along fractures, and irregular fillings in orthopyroxene (see review by Treiman (2021), and references therein). 

The patches of carbonates show strong compositional zoning ranging from calcite-rich to magnesite-siderite solid solution 

compositions (e.g., Corrigan and Harvey, 2004; Holland et al., 2005). These carbonates likely formed at low temperature (ca. 

10-20 °C; Halevy et al., 2011; del Real et al., 2016) during fluid-rock interactions that were broadly contemporaneous with 

the main shock event recorded in ALH 84001 (e.g., Treiman, 2021). Dating carbonate-rich fractions using the Rb-Sr system 50 

yielded a precise formation age of 3.94 ± 0.02 Ga (2; Borg et al., 1999; Beard et al., 2013), which is consistent with a less 

precise Pb/Pb isochron corresponding to a date of 4.045 ± 0.090 Ga (2; Borg et al., 1999). As stated by Treiman (2021), 

“there is little evidence that anything had happened to ALH 84001 since 3.9 Ga” and the time of carbonate formation until it 

was launched from Mars ca. 14 Ma ago (Eugster et al., 1997), which is crucial with respect to the U-Pb system having remained 

closed since ALH 84001 carbonates formed. 55 

2 Studied sample 

The studied polished section (Fig. 1) was derived from a chip of the ALH84001,287 allocation from the NASA Ancient Mars 

Meteorite Program. The section contains patches of carbonates, associated with chromite, in between larger orthopyroxene 

grains (Fig. 1). The carbonates display the range of compositions typical for ALH 84001 carbonates, from Mg-rich magnesite 

to Ca-rich calcite, with intermediate Fe-rich ankerite areas (Fig. 1). The Mg- and Fe-rich carbonates seem to be part of broken 60 

rosettes, while Ca-rich carbonates appear associated with maskelynite (Fig. 1). 
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3 Laser Ablation – Inductively Coupled Plasma Mass Spectrometer analyses 

U-Pb analyses were carried out at the University of Manchester using a Teledyne Photon Machines Analyte Excite+ 193 nm 

ArF excimer laser ablation system equipped with a HelEx II active 2‐volume ablation cell, coupled to an Agilent 8900 triple 65 

quadrupole Inductively Coupled Plasma Mass Spectrometer (ICP‐MS) using a signal-smoothing device (see Supplementary 

Table S2) for a summary of the analytical setup and data processing procedure). 

 

The material ablated from target carbonates was carried to the ICP-MS by high purity He, which was mixed with Ar before 

injection into the plasma source. High purity N2 was added to the He stream at a flow rate of 2 mL.min-1 to enhance 70 

sensitivity. Tuning of the ICP-MS and mass calibration were performed at the start of the analytical session by optimising 

the ion signals during ablation of the NIST SRM 612 reference glass, while maintaining 238U+/232Th+ close to unity and 

minimising the 232Th16O+/232Th+ ratio (ca. 0.3%). Glass and carbonates were ablated using a 25 μm laser beam size, a fluence 

of 4 J.cm-2, and a repetition rate of 5 Hz. Each analyses lasted 50 s and was preceded by 30 s counting time of the gas blank 

(background). The masses analysed and corresponding dwell times are reported in Supplementary Table S2. 75 

 

The reference glass NIST614 (0.823 μg.g-1 U, 2.32 μg.g-1 Pb; Jochum et al., 2011) was used to correct for 207Pb/206Pb 

fractionation, while mass bias correction of the measured 238U/206Pb ratios was carried out using repeated analyses of the 

reference calcite WC-1, which has a thermal ionisation mass spectrometry (TIMS) age of 254.4 ± 6.4 Ma (Roberts et al., 

2017). To ensure accuracy, the Duff Brown Tank (DBT) calcite (64.0 ± 0.7 Ma; Hill et al., 2016) and AUG-B6 calcite (43.0 80 

± 1.0 Ma; Pagel et al., 2018) were also analysed and used as secondary reference materials. 

 

Data processing was carried out using Iolite v4.5, using the NIST614 glass as primary reference material to remove 

instrument baseline contributions, mass bias of Pb isotopes, and downhole fractionation and instrumental drift of 206Pb/238U 

ratios (Paton et al., 2011). The reproducibility obtained on NIST614 for 207Pb/206Pb (±1.7%, n = 9, 95% confidence level) 85 

and 206Pb/238U (±1.6%, n = 9, 95% confidence level) ratios were propagated by quadrature addition into each analysis 

207Pb/206Pb and 206Pb/238U individual uncertainties. Repeated analyses of the NIST612 glass yielded an average 207Pb/206Pb 

ratio of 0.871 ± 0.044 (n = 8, 2 standard deviation), which is within error of its known 207Pb/206Pb ratio of 0.90745 ± 0.00004 

(Baker et al., 2004). 

 90 

The data obtained for the reference calcite WC-1 were then plotted in a Tera-Wasserburg diagram using IsoplotR 

(Vermeesch, 2018), and yielded a lower intercept uncorrected date of 255.2 ± 5.9 Ma (95% confidence level, MSWD = 1.1, 

n = 10) for a discordia anchored at a common 207Pb/206Pb ratio of 0.85 (Roberts et al., 2017). To obtain the known intercept 

age of 254.4 ± 6.4 Ma for the WC-1 calcite, we applied a linear correction factor of 1.0031 to the 206Pb/238U ratios, which we 

also applied to all the samples analysed in the session. All calculated dates are associated with two uncertainties, the first one 95 
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including the random uncertainties for each analysis (internal uncertainties on measured 207Pb/206Pb and 206Pb/238U ratios and 

reproducibility on repeated NIST614 analyses), while systematic uncertainties (2.5% uncertainty on the WC-1 age, and 

0.14% and 0.11% on the 235U and 238U decay constants, respectively; Jaffey et al., 1971) are propagated by quadratic 

addition in the second one.  

 100 

The data obtained on the DBT calcite yielded a lower intercept date of 64.9 ± 2.2/2.8 Ma (95% confidence level, MSWD = 

2.9, n = 12) for a discordia anchored at a common 207Pb/206Pb ratio of 0.74 (Hill et al., 2016) (Supplementary Fig. S1). 

Because of its lower U abundance and younger age, the data obtained on the AUG-B6 calcite are less precise, yielding a 

concordia date of 40.8 ± 2.0/2.2 Ma (95% confidence level, MSWD concordance + equivalence = 2.2, n = 8) 

(Supplementary Fig. S1), which is consistent with a 238U/206Pb weighted average date of 41.6 ± 2.1/2.3 Ma (95% confidence 105 

level, MSWD = 0.4, n = 8). All results are available in Supplementary Table S3. 

4 Results 

The carbonates analysed in ALH 84001 contain ca. 0.1-0.4 μg.g-1 U and 0.1-0.5 μg.g-1 Th (Table 1). When plotted in a Tera-

Wasserburg 207Pb/206Pb vs. 238U/206Pb diagram, ALH 84001 carbonates yield a concordant date of 3941 ± 49/110 Ma (n = 14, 

MSWD = 2.0; Fig. 2A), which is identical to a weighted mean 207Pb/206Pb date of 3967 ± 56/113 Ma (n = 14, MSWD = 1.9; 110 

Fig. 2B). Carbonate analyses plot on the concordia curve, indicating that they do not contain appreciable amount of common 

Pb. This is consistent with the measured 204Pb intensities that are within error of 0 counts per second (Table 1). 

5 Discussion and implications 

5.1 Comparison with previous ALH 84001 carbonate dating studies 

In situ U-Pb dating of carbonates in ALH 84001 using LA-ICP-MS yields a concordia date of 3941 ± 49/110 Ma, which is 115 

identical to the carbonate step-leaching Rb-Sr isochron date of 3.94 ± 0.02 Ga (Borg et al., 1999; Beard et al., 2013) and the 

less precise Pb/Pb isochron date of 4.045 ± 0.090 Ga (Borg et al., 1999). Before propagating the ±2.5% uncertainty associated 

with the age of the primary U-Pb reference carbonate WC-1, and the uncertainties associated with the 238U and 235U decay 

constants, the carbonate U-Pb concordia date is accompanied with a fairly precise 2 uncertainty of ±1.2%, which increases 

to ±2.8% when all uncertainties are propagated. This suggests that in situ U-Pb dating of carbonates has the potential to yield 120 

precise dates, but also highlights the need to reduce uncertainties on reference materials. Our LA-ICP-MS results also indicate 

that using a calcite primary reference material for correcting U/Pb fractionation in Mg- and Fe-rich carbonate matrices, such 

as magnesite and ankerite, produce accurate dates (within the obtained uncertainties). A final point worth highlighting is the 

fact that carbonates in ALH 84001 do not contain appreciable amount of common Pb, as indicated by their concordant U-Pb 

date of ca. 3.94 Ga and their 204Pb intensities within error of 0 count per second. This is unusual, as in most examples in 125 
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terrestrial systems carbonates, do contain common Pb incorporated during their crystallisation (e.g., Roberts et al., 2020). This 

observation suggests that the fluids from which ALH 84001 carbonates formed contained very little Pb. 

5.2 Robustness of the carbonate U-Pb chronometer and further applications 

Our in situ LA-ICP-MS analyses confirm that carbonates in ALH 84001 formed ca. 3.94 Gyr-ago, and that the U-Pb 

chronometer in these carbonates has remained closed to any disturbance event since they formed. This is consistent with the 130 

suggestion that not much happened to ALH 84001 between 3.9 Ga and its launch from Mars 14 Myr-ago (Treiman, 2021), and 

indicates that this latter event did not reset the carbonate U-Pb chronometer. Carbonates in terrestrial Archean samples are 

probably not the best suited for U-Pb dating as most Archean formations would have been heated up to at least low greenschist 

metamorphic conditions and/or been affected by hydrothermal alteration, because the Earth is geologically active and harbours 

a complex hydrological cycle. On the other hand, results of this study open up opportunities for dating old carbonates in 135 

samples that have had a relatively simple history post-carbonate formation. For example, volatile-rich carbonaceous chondrites 

(e.g., CI and CM chondrites) typically contain carbonates formed during fluid-rock interactions on their parent-asteroids ca. 

4563-4561 Myr-ago (e.g., Jilly-Rehak et al., 2017, and references therein), which is within 10 Myr of the formation of the first 

solids in the Solar System. After this phase of early hydrothermal alteration, it is thought that not much happens to these 

samples on their parent asteroids until they end up on the Earth as meteorite fragments. Carbonates in carbonaceous chondrites 140 

could thus be prime targets to further constrain the timing of hydrothermal alteration on volatile-rich asteroids using the U-Pb 

dating chronometer. 
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Figure 1: Backscattered electron image (A) and composite X-ray map (B) of the target carbonate patches in ALH 84001. Mineral 280 
abbreviations are ank = ankerite, cal = calcite, chr = chromite, mgs = magnesite, msk = maskelynite, opx = orthopyroxene. 

 

 

 

Figure 2: Tera-Wasserburg 207Pb/206Pb vs. 238U/206Pb diagram (A) and 207Pb/206Pb dates (B) obtained on ALH 84001 carbonates. 285 
Ellipses (A) and error bars (B) correspond to 2 uncertainties. 
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